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Abstract— A convex optimization-based robust RST controller 

design approach is proposed in this paper. It is shown that the 
system specifications given as the Nyquist robust stability 
criteria, absorption of effects for different types of external 
disturbances and the pole placement problem for LTI systems 
can be transformed into convex constraints. The controller 
design problem is then reduced to solving the standard 
quadratically-constrained convex program. The analysis also 
illustrates the potential limitations of the method through 
inherent tradeoff between robustness stability and performance 
specifications. The design procedure is illustrated on a practical 
industrial problem, showing that the proposed method can 
provide very robust solutions with good performance. 
 

Index Terms—Control design, Digital control, Optimization  
 

I. INTRODUCTION 
eneral procedure to design and tune a good controller is 
[1]: I) To specify the desired control-loop performances; 

II) To obtain a dynamic model of the plant to be controlled 
(e.g. from real data by identification); III) To develop a 
suitable controller design methodology, compatible with the 
desired performances and the corresponding plant model; IV) 
To have a procedure for controller validation and onsite re-
tuning; V) To develop and implement software packages with 
real-time capabilities for data acquisition, system 
identification, control design and on-site commissioning. 
Energy and material savings as well as improvement in the 
quality of the products should be a result of a well designed 
control system. 

This paper presents a new approach for the design of the 
RST controller, which can be shown to cover all the linear 
control laws for linear SISO system [1]. In previous work, the 
pole placement methodology for synthesis of linear SISO 
systems produced the RST controller in the final step [2] as a 
solution of one or more of the Diophantine equations [2]-[5]. 
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However, Diophantine equations do not have a unique 
solution, and different possible solutions of the RST controller 
parameters have different implications related to the control 
objectives [2],[3]. To choose the RST polynomials that better 
fit the control system requirements can be a very difficult 
numerical problem, especially in auto- and self-tuning control 
systems. Because of these difficulties general RST controller 
design for industrial applications is still a challenge [7],[5].  

In this paper, we develop a procedure for design of robust 
RST controllers based on the use of convex optimization. We 
develop methods to turn the Diophantine equations and robust 
stability specifications into convex constraints, and formulate 
the RST controller problem as a quadratically-constrained 
convex feasibility problem that can be solved very efficiently 
on regular compute hardware. We also utilize the absorption 
principle to specify the control objectives for the steady-state 
tracking trajectory in the presence of disturbances. The 
methodology is illustrated through an example of the 
controller design for the flexible coupled motor servo drive 
with load [12]. 

 

II. PROBLEM FORMULATION AND DESIGN STEPS 
In the RST control structure shown in Fig.1, the plant is 

described by its pulse transfer function or by polynomials 
B(z-1) and A(z-1), the control structure is given by polynomials 
R(z-1), S(z-1) and T(z-1), r is the reference signal, and signals d 
and v model the influence of external disturbances and noise 
on the system output y. 
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Fig.1 RST control structure 
 

The nominal model of the plant in Fig.1 is given by  
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The uncertainties of the plant modeling may be adequately 
described by a multiplicative bound α(ω) [2],[6] 
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where W(z-1) represents the actual plant behavior. 
Under the nominal conditions ( 1 0 1( ) ( )B z B z− −≡ and 

1 0 1( ) ( )A z A z− −≡ ), the closed-loop transfer functions 
1 1( ) ( )y z r z− − , 1 1( ) ( )y z d z− −  and 1 1( ) ( )y z zν− − are easily 

derived from Fig. 1 as 
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The system set-point response can be adjusted according to 
desired system closed-loop transfer function (pole placement 
problem [2])  
 

Φw den
num

den

z w z w z
w z
w z

( ) ( ), ( )
( )
( )

− − −
−

−= =1 1 1
1

1
. (7) 

 
Namely.  
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where A0(z-1) is the so-called observer polynomial [2]. The 
condition of the desired dynamical behavior of the nominal 
closed-loop system is then given by Diophantine equation 
 

0 1 1 0 1 1 1( ) ( ) ( ) ( ) ( )polA z R z B z S z K z− − − − −+ ≡ . (9) 
 

In order to specify the desired steady-state behavior of the 
system, according to Fig. 1, we use the absorption principle 
[6] and derive the error signal as 
 

0 0 0

0 0 0 0 0 0
TB B S A Re r y r r d

A R B S A R B S A R B S
ν= − = − − −

+ + +
 (10) 

 
where, for the sake of brevity, variable arguments are omitted 
from notations of variables.  

The absorption principle has the intention to embed the 
disturbance model into the control algorithm in order to 
suppress or reject the influence of the disturbance on the 
steady-state value of the process output. In the case of regular 
disturbances belonging to a certain class [6]: 

 
Φ Φw wz w z t kT T( ) ( ) , (deg )− − = = ≥1 1 0 za , (11) 

 

we will call the polynomial 1( )z−Φ  the absorbing polynomial. 

The absorption filter 1( )z−Φ  is designed for a known class of 
disturbances and can be simply resolved as [3] 
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In the case of a stochastic disturbance d(t), the absorption filter 
should suppress as much as possible the effects of the 
disturbance on the system output. Thus, for a low frequency 
disturbance d(t), which can be generated by double integration 
of the white noise, an appropriate choice of the absorption 
filter is Φs z z( ) ( )− −= −1 1 21  that corresponds to absorption of 
a linear (ramp) disturbance [6].  

The absorption conditions of the steady-state influence of 
the external disturbance d(t) and the reference input r(t) on the 
error tracking system signal (10) are derived from (11) and 
(10) as  
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0 1 1 1 1 1( ) ( ) ( ) ( ) ( )r r polB z T z z M z K z− − − − −+Φ ≡  (14) 
 
Then, the system of Fig. 1 satisfies the condition of robust 
stability if the nominal plant is stable and the following 
inequality holds [2]6 
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By taking into account (9) the condition of robust stability 
(15) can be transformed to 
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Suppression of disturbance and noise effects on the system 

output can also be expressed by relations 
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are the desired or required transfer functions whose 
magnitudes at all frequencies should be as small as possible. 
From (18), the condition of noise suppression can be 
expressed as 

 

Φw den
num

den

z w z w z
w z
w z

( ) ( ), ( )
( )
( )

− − −
−

−= =1 1 1
1

1
. (19) 

 
Given the above formulation, the controller design 

procedure can be formulated in the following steps: 1) Define 
the desired characteristic polynomial Kpol(z-1), frequency 
function ( )desired

yGν ω  [ ]0, Tω π∈ , and the desired absorption 

filters 1( )r z
−Φ and 1( )d z

−Φ  based on a priori information 
about signals d(t) and r(t); 2) Identify the plant model 
yielding 0 1( )A z− , 0 1( )B z−  and ( )α ω ; 3) Check whether the 
control specifications are realistic. If not - redesign the 
specifications under 1) and/or do a more accurate 
identification procedure under 2); 4) Solve the system of three 
Diophantine equations (9), (13), (14) with inequalities (16) 
and (19) to obtain the controller polynomials R, S and T. 

Challenges and tradeoffs involved in choosing the right set 
of control specifications are discussed in [1]-[3], and in 
general represent nontrivial design decisions. A possible 
choice of characteristic polynomial Kpol(z-1) [6] is given as 
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which corresponds to a strictly aperiodic closed-loop system 
step response. Smaller values of n and bi correspond to higher 
speed of the system response and lower degree of system 
robustness. Thus in tuning of n and bi, it is necessary to start 
with a certain value of n and smaller values of bi and then to 
increase bi gradually. If for the allowable values of bi the 
desired criterions are not satisfied, the value of n should be 
increased to the next integer and so on. 

Another desired criterion is a condition for disturbance 
suppression (17), which can be reformulated as  
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While directly specifying desired

dyG  is desirable from user 
perspective, it can be overly constraining in practice due to the 
inherent tradeoff with the robustness criterion (15), leading 
often to infeasible optimization problem formulations. Instead, 
to allow additional degrees of freedom for the optimization 
problem, while retaining some performance guarantees, we 
specify the steady-state error behavior utilizing the absorption 
principle as shown in (13) and (14).  
To further illustrate this inherent tradeoff we can write starting 
from (9), (13), (17),  
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where the first inequality is the triangle inequality and the 
second and third follow from imposing constraints in (16) and 
(21). Simplifying, by diving with non-zero polynomials, we 
see that (wherever Kpol is non-zero, which is almost 
everywhere as the set of zeros is finite for any polynomial) we 
must have  
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at every discrete frequency. This means that frequencies where 
our model’s uncertainty is high are also critical for disturbance 
rejection. Also, from (23) 
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Relations (23) and (24) represent a useful check if the given 
performance and robustness specifications are not 
simultaneously achievable. 

The control design problem given by (9), (13), (14), (16) 
and (19) can be described as a convex optimization problem. 
Unlike a pole placement problem [2], this problem 
formulation enables us to look at a broader range of solutions 
to Diophantine equations, while still constrained by the 
robustness stability and noise suppression criterions, leading 
to potentially better controller performance. 

 

III. CONVEX OPTIMIZATION AS A DESIGN TOOL 
In this section we show how the previously described 

design specifications of the robust RST controller can be 
transformed into a standard convex program. This step enables 
us to use readily available optimization software for efficient 
resolution of design constraints and obtaining the desired RST 
parameters. In our case the resulting convex programming 
formulation is a quadratically constrained (QC) feasibility 
problem. 

In order to use the available convex optimization packages, 
a design problem must be convex and formulated as one of the 
standard optimization programs [10],[11]. In general, convex 
optimizations are problems of the following form 

 
0min ( )
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s t f x i k
Ax b

≤ =
=

, (25) 

 
where the optimization objective (cost), 0( )f x , must be a 
convex function. All the constraints must be convex sets 
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defined either as sub-level sets of convex functions ( )if x , or 
through linear equality constraints [8]. 

Our design goal is to determine polynomials R, S and T, 
given the performance specifications ( rΦ , dΦ , polK , desired

yGν ) 

and the model of the plant ( 0 1( )A z− , 0 1( )B z− , ( )α ω ). The 
maximum desired order of each polynomial also has to be 
specified. 

For the rest of this section we will represent the RST 
polynomials with their coefficients, ( )1,..., Rn

r r r= , 

( )1,..., Sn
s s s=  and ( )1,..., Tn

t t t=  in the standard 

representation 
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where , ,R S Tn n n  are appropriately chosen degrees so that 
Diophantine equations (9), (13) and (14) can be solved. Note 
that it is easy to determine the minimum required order of 
these polynomials by analyzing the orders of predetermined 
polynomials ( rΦ , dΦ  and polK ) in the Diophantine equations. 
With this we proceed to analyze the convexity of the design 
constraints for the robust RST controller. In the most general 
setting, the inequalities in (16) and (19) do not specify convex 
sets in polynomial coefficients. To see this we consider these 
constraints at a fixed digital frequency 0ω . Then all the 
constraints can be written in the same, abstract, form 
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where vector { },p r s∈ , vector k is the vector of coefficients 
of Kpol(z-1) and the positive constant 0( )c ω  depends on the 
nominal plant model and the uncertainty specification. 
Obviously, if this inequality is satisfied for some k  it is 
satisfied for k−  as well. However, it is not necessarily also 

satisfied for ( )1 1 0
2 2
k k+ − = . Thus these constraints are not 

jointly convex in p  and k . 
Since we already assumed that the designer has a way of 

determining a preferable pole placement, if we fix the desired 
characteristic polynomial Kpol(z-1), then the constraints in (16) 
and (19) become convex. In this case, as the right-hand sides 
become constants for each discrete frequency, the inequalities 
are compositions of linear functions of decision variables (the 
coefficients of the polynomials R, S and T) and the norm 
inequality defining a sub-level set, which are convex [8]. 
With this simplifying step, the conditions of robust stability 
and noise rejection given in relations (16) and (19) become 
convex, semi-infinite constraints. What this means is that the 
number of decision (optimization) variables in each constraint 
is finite (as the R, S and T polynomials are chosen with finite 
order), but the constraint must be satisfied at infinite number 

of points (every possible digital frequency). One 
straightforward technique to deal with this obstacle is to 
sample each constraint at a certain number of digital 
frequencies and impose the constraints only in those sampling 
points [9]. In this way the semi-infinite constraints (16) and 
(19) become a finite set of simple quadratic constraints on the 
finite number of decision variables, which can be expressed in 
the same, abstract, form as 
 

0
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for some number of sampling points [ ]1,..., 0,Nω π∈ . Note that, 
since Kpol(z-1) are now fixed polynomials, the right-hand side 
reduces to a positive constant at each sampling point. The 
intuition behind this approach is that polynomials are nicely 
behaved, smooth functions, and we are trying to satisfy this set 
of semi-infinite constraints on a compact set (set of discrete 
frequencies). Thus if the sampling of the unity circle is fine 
enough, satisfying the constraints in a finite number of points 
will guarantee that they are satisfied on the compact set of 
interest. Since the design process is not time-critical, we will 
not pursue a more rigorous qualification of the required 
sampling grid, as the optimization can always be re-run with a 
finer grid sampling if we find the conditions of this type to be 
violated after solving. In this way we obtain one inequality 
constraint ( )if x , of the formulation (25) in the form of (28). 
Thus, by requiring that the desired closed loop characteristic 
polynomial is set by the designer, and by sampling the semi-
infinite inequality constraints, we convexify the original 
model and reduce it to a finite set of convex quadratic 
inequalities to be handled by the optimization solver. 

To ensure the consistency of the model, we must also 
impose constraints that express the relationship between all 
the polynomials that factor in (16) and (19), namely the 
Diophantine relations in (9), (13) and (14). This is a much 
simpler task. Considering that optimization variables are the 
coefficients of the polynomials R, S, T, Mr and Md, and that all 
other polynomials and their coefficients are fixed, we 
immediately see that constraints (9), (13) and (14) become a 
set of linear equations on their coefficients. With polynomial 
parameterization (26) we can now rewrite (9), (13) and (14) in 
a more compact form as 
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 (29) 

 
where hT denotes the Toeplitz matrix for signal h. Note that in 
these equations vectors r , s , t , dm , rm  contain optimization 

variables, while vectors 0a , 0b , dϕ , rϕ  and k contain only 
constants. Thus we have defined the matrix A and the vector b 
in formulation (25).  



ELECTRONICS, Vol. 15. No1, June 2011, invited paper, ISSN 1450-5843  
 

5 

Finally, we have not included any performance metric in 
our robust RST model, thus we can trivially assign 0( ) 0f x = , 
to complete our optimization program. In general, however, 
we could define a (convex) function to measure the quality of 
the controller to be optimized. 

From the previous we see that, once the desired 
performance is specified in a convenient form, synthesis of the 
RST controller that ensures robust stability to the plant 
uncertainty, certain level of performance in terms of 
disturbance and noise suppression and internal consistency of 
the model can be formulated as a QC optimization problem. 

In view of relations (22), (23) and (24) we should note that 
it might happen that the optimization has no valid solutions for 
a particular set of design specifications. Unfortunately, due to 
necessity but not sufficiency of these constraints there is no 
simple procedure to ensure that the desired controller will 
exist so that the optimization has a feasible solution. Although 
a number of obviously infeasible formulations can be 
filtered-out by using the relations (22)-(24), a significant 
number of possibly infeasible specifications still exist, leaving 
this an open research question. 

Finally we should note that the described optimization 
model of the RST controller is by no means a complete one. 
For example we might want to impose additional constraints 
to ensure that the solver only allows for stable R, S and T 
polynomials. This is known to be a non-convex constraint if 
the sets of all the stable polynomials are considered. However, 
certain convexifications (that basically reject some solutions in 
order to construct a convex, inner approximation of the set of 
stable polynomials) and parameterizations can be used to 
include such constraints in optimization design flow. 
Currently the stability of the solution is checked ex post facto 
and improving this aspect of the model is the next logical step 
in this line of work. 
 

IV. DESIGN EXAMPLE 
The proposed controller synthesis method is shown here for 

the class of motion control systems with flexible coupling. 
Our aim is to control the load shaft speed in the presence of 
torsion vibrations, system parameter variations, disturbance 
torque, and in the absence of a dedicated load side speed 
sensor. 

Note that many controllers already exist in the field of 
motion control, but most of them are designed by assuming an 
ideal, rigid transimission train, adopting 0( ) 1 ( )m lW s J J s= +  
(Jm, Jl - motor and load inertia) as a simple plant model. As an 
actual plant model we utilize a model of flexible coupling of 
motor axle and load [12]. We distinguish the following 
important data (see Fig. 2) Jm=0.000620 kgm2, 
Jl=0.000220 kgm2, cs=350 Nm/rad, bv=0.004 Nms/rad.  

The desired close-loop system transfer function is specified 
by undamped natural frequency ωn=400 rad/s and relative 
damping coefficient ζ=0.7. The sample rate is T = 0.5 ms. 
Adopted absorption polynomials are 11r z−Φ = − , 

1 2(1 )d z−Φ = − , which fit the step and ramp disturbances. 
 

 
Fig. 2. Flexible coupling of motor axle and load 
 
This formulation of the RST controller design can be solved 

within minutes, for couple of hundreds sampling points on the 
unity circle, on standard 2GHz personal computer with 2GB 
of RAM and running Ubuntu Linux. Our particular 
implementation of this optimization is done through YALMIP 
[10] parser and solved with SeDuMi [11] SDP solver. 

With the above input specifications the solver’s calculation 
of polynomials R, S and T are: R(z-1)=0.64-0.77z-1+0.395z-2-
0.264z-3, S(z-1)=0.5-1.1z-1+1.034z-2-0.41z-3 and 1 1( ) 0.039T z z− −= . 
The designed system has met control specifications as 
illustrated by simulation results in Figs. 3 and 4, for a system 
reference ( ) 3 ( 0.05) rad sr t h tω = − , and a disturbance via load 
torque 1 ( 0.1)NmlM h t= −  as in [12]. The disturbance effect d 
(Fig. 1) for a nominal plant ( 0 0 0, lW d W M= ) is a ramp, while 
for the real plant in Fig. 2, the torque disturbance manifests 
itself as the output disturbance d ≡ ( ) lW s M , which is a ramp 
with superposed quasi-oscillation at plant resonance frequency 
(ωp=1468 rad/s). The results encompass the time response of 
the nominal system, and the motor and load speed time 
responses of realistic plant model structure in Fig. 2. Figure 3 
shows that the RST controller has satisfied the robust stability.  

Multiplicative bound of uncertainties α(ω) in Fig. 3 is 
calculated from the realistic and nominal plant models. The 
successful design of the robust stability and the width of the 
robustness region are obvious advantages of the proposed 
design method. The control of the plants with uncertainties at 
resonant frequencies is a very difficult task in general [6] and 
control methods for flexible drives mostly do not address these 
robust stability issues [3], [12]. 
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Digital	frequency	ωT	∈[0,	π]	  
Fig.3. Illustration of the robust stability test 
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Fig.4. Simulation of the RST controller design efficiency 

 

V. CONCLUSION 
Developing design methodology for an RST controller is a 

very attractive task since this topology covers the whole space 
of linear discrete SISO controllers. While some well-known 
subsets, like PID controller, have been heavily used in 
industrial applications, other, potentially more-efficient 
designs have not transitioned yet into industrial settings, 
mainly due to the lack of a computationally efficient and 
robust design methodology. The main challenges lie in 
controller tuning and plant identification procedures and their 
realization in industrial environment. 

In this paper we presented a methodology for design of 
robust RST controllers, which utilizes the computational 
efficiency of convex optimization to find the controller 
designs from a larger set of possible solutions than considered 
previously in the literature. The convex relaxations allow the 
search space to be still efficiently constrained by the robust 
stability and steady-state disturbance and noise rejection 
specifications, yielding good robustness performance at 
critical resonant frequencies. 
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